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Abstract 
Given the critical role of motion estimation (ME) in a video coder, testing such a module is of priority concern. 

While focusing on the testing of ME in a video coding system, this work presents an error detection and data 

recovery (EDDR) design, based on the proposed residue-and-quotient (RQ) code, to embed into ME for video 

coding testing applications. An error in processing elements (PEs), i.e. key components of a ME, can be 

detected and recovered effectively by using the proposed EDDR design. Experimental results indicate that the 

proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and 

timing penalty. Importantly, the proposed EDDR design performs satisfactorily in terms of throughput and 

reliability for ME testing applications. 

Keywords: Area overhead, data recovery, error detection, motion estimation, reliability, proposed residue-and-

quotient (RQ) code. 

 

I. INTRODUCTION 
The new Joint Video Team (JVT) video coding 

standard has garnered increased attention recently. 

Generally, motion estimation computing array 

(MECA) performs up to 50% of computations in the 

entire video coding system, and is typically 

considered the computationally most important part 

of video coding systems. Thus, integrating the 

MECA into a system-on-chip (SOC) design has 

become increasingly important for video coding 

applications. 

Although advances in VLSI technology allow 

integration of a large number of processing elements 

(PEs) in an MECA into an SOC, this increases the 

logic-per-pin ratio, thereby significantly decreasing 

the efficiency of chip logic testing. For a commercial 

chip, a video coding system must introduce design 

for testability (DFT), especially in an MECA.  

The objective of DFT is to increase the ease with 

which a device can be tested to guarantee high 

system reliability. Many DFT approaches have been 

developed.  

These approaches can be divided into three 

categories: ad hoc (problem oriented), structured, and 

built-in self-test (BIST). Among these techniques, 

BIST has an obvious advantage in that expensive test 

equipment is not needed and tests are low cost. 

This paper develops a built-in self-detection and 

correction (BISDC) architecture for motion 

estimation computing arrays(MECAs).Based on the 

error detection & correction concepts of biresidue 

codes, any single error in each processing element in 

an MECA can be effectively detected and corrected 

online using the proposed BISD and built-in self-

correction circuits. Performance analysis and 

evaluation demonstrate that the proposed BISDC 

architecture performs well in error detection and 

correction with minor area. 

Section II describes the mathematical model of 

proposed RQ code and the corresponding circuit 

design of the RQ code generator (RQCG). Section III 

then introduces the proposed EDDR architecture, 

fault model definition, and test method. Next, Section 

IV evaluates the performance in area overhead, 

timing penalty, throughput and reliability analysis to 

demonstrate the feasibility of the proposed EDDR  

architecture for ME testing applications. Conclusions 

are finally drawn in Section V. 

 

II. BACKGROUND 
The Motion Estimation Computing Array is used 

in Video Encoding applications to calculate the best 

motion between the current frame and reference 

frames. The MECA is in decoding application 

occupies large amount of area and timing penalty. By 

introducing the concept of Built-in Self test technique 

the area overhead is increased in less amount of area. 

 

Digital Video Compression 

Video compression is achieved on two separate 

fronts by eliminating spatial redundancies and 

temporal redundancies from video signals. Removing 

spatial redundancies involves the task of removing 

video information that is consistently repeated within 

certain areas of a single frame. For example a frame 

shot of a blue sky will have a consistent shade of blue 
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across the entire frame. This information can be 

compressed through the use of various discreet cosine 

transformations that map a given image in terms of 

its light or color intensities. This paves the way for 

spatial compression by only capturing the distinct 

intensities, instead of the spread of intensities over 

the entire frame. Since compression through 

removing spatial redundancies does not involve the 

use of motion estimation, this topic is not examined 

further. 

Compression through the removal of temporal 

redundancies involves compressing information that 

is repeated over a given sequence of frames. For 

example the objects in the background of a news 

anchor being filmed are not likely to change over the 

course of the footage. This redundancy can be taken 

advantage of to reduce the storage space required for 

the footage. When the background does happen to 

move, recording only the motion of objects over 

consecutive frames in the form of motion vectors can 

still achieve significant amounts of compression. 

Consequently, the motion estimation process is the 

process of deriving a suitable Motion Vector (MV) 

that best describes the spatial movement of objects 

from one frame to the next. 

The spatial and temporal compression techniques 

discussed above have been widely implemented in 

former compression standards such as MPEG 2 

(developed by the Motion Picture Experts Group 

committee). At present, the same two fundamental 

techniques have been enhanced and optimized to 

form the new standard used in H.264 video 

compression. The H.264 standard was jointly formed 

by the International Telecommunications Union – 

Telecommunications Standardization Sector (ITU –

T) Video Coding Experts Group (VCEG) and the 

International Organization for Standardization(ISO) 

MPEG committee. MPEG 2 had compression ratios 

of between 20:1 and 30:1, the new H.264 standard 

can achieve compression ratios as high as 50:1 and 

60:1 and achieve better video quality. 

Among many other new features and 

enhancements, the most notable features of the H.264 

standard for this work are its ability to achieve a finer 

granularity of motion estimation and its ability to 

capture periodic motion.  

 

Block Matching Motion Estimation 

Several different algorithms derived from 

various theories, including object-oriented tracking, 

exist to perform motion estimation. Among them, one 

of the most popular algorithms is the Block Matching 

Motion Estimation (BME) algorithm. BME treats a 

frame as being composed of many individual sub-

frame blocks, known as macro Blocks. Motion 

vectors are then used to encode the motion of the 

macro Blocks through frames of video via a frame by 

frame matching process. 

When a frame is brought into the encoder for 

compression, it is referred to as the current frame. It 

is the goal of the BME unit to describe the motion of 

the macro Blocks within the current frame relative to 

a set of reference frames. The reference frames may 

be previous or future frames relative to the current 

frame. Each reference frame is also divided into a set 

of sub frame blocks, which are equal to the size of 

the macro Blocks. These blocks are referred to as 

reference Blocks. 

The BME algorithm will scan several candidate 

reference Blocks within a reference frame to find the 

best match to a macro Block. Once the best reference 

Block is found a motion vector is then calculated to 

record the spatial displacement of the macro Block 

relative to the matching reference Block, as shown in 

Figure 1 

 
Fig 1: Block Matching between Current & reference 

frames 

 

Search Windows 

When searching a reference frame for possible 

macro Block matches, the entire reference frame is 

not searched. Instead the search is restricted within a 

search window. Search windows in most H.264 

implementations have a size of 48-pixel (rows) x 63-

pixel (columns). In this thesis, we use the same 

48x63 search window size. This window consists of a 

vertical search range of  [-16, +16] and a horizontal 

search range of [-24, +23] pixels as illustrated in 

Figure 2 

 
Fig 2: Search Window size Definition 



K.Sarada Int. Journal of Engineering Research and Applications                                   www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 1( Part 5), January 2015, pp.66-72 

 www.ijera.com                                                                                                                                68 | P a g e  

In the Fig 2, the dashed large rectangle in the 

reference frame represents the 48x63 search window 

area. The dashed square in the top left corner of the 

search window represents the first of the 1584 

possible candidate 16x16 reference Blocks. Each 

subsequent reference Block is offset by either one 

pixel row or one pixel column from its predecessor 

while the entire search window area is covered by the 

overlapping candidate reference Blocks. Note that the 

original 16x16 macro Block is positioned at the 

centre of the search window. In order to compare it to 

every candidate reference Block within the search 

window, the macro Block has a maximum 

displacement of 24 pixels to the left, 23 pixels to the 

right, 16 pixels up, and 16 pixels down from its 

original position – resulting in a horizontal search 

range of [-24, +23] and a vertical search range of [-

16, +16]. 

 

III. PROPOSED SYSTEM 
In this paper the Built-in Self test Technique 

(BIST) is included in the MECA and in each of 

Processing Element in MECA. Thus by introducing 

the BIST Concept the testing is done internally 

without Connecting outside testing Requirements. So 

the area required is also reduces. And in this Project 

the Errors in MECA are Calculated and the Concept 

of Diagnoses i.e. Self Detect and Self Repair 

Concepts are introduced. The area results are 

compared with the MECA without BIST technique. 

 
Fig3: Block Diagram of Proposed MECA BIST 

 

Signals TC1and TC2 are utilized to select data 

paths from Cur.Pixel and Ref.pixel, respectively. The 

output of a specific PEi can be delivered to a detector 

for detecting errors using the DC1 signal. Moreover, 

the selector circuit is controlled by signals SC1 and 

SC2 that receive data from a specific PEi+1, and then 

export these data to the next specific PEi or syndrome 

analysis and corrector (SAC) for error correction.  

Based on the concepts of BIST and bi-residue 

codes, this paper presents a built-in self-

detection/correction (BISDC) architecture that 

effectively self-detects and self-corrects PE errors in 

an MECA. Notably, any array-based computing 

structure, such as the discrete cosine transform 

(DCT), iterative logic array (ILA), and finite-impulse 

filter (FIR), is suitable for the proposed method to 

detect and correct errors based on bi-residue codes. 

Fault Model 

The PEs are important building blocks and are 

connected in a regular manner to construct an 

MECA. Generally, PEs are surrounded by sets of 

adders and accumulators that determine how data 

flows through them.  

Thus, PEs can be considered the class of circuits 

called ILAs, whose testing assignment can be easily 

achieved using the fault model called as cell fault 

model (CFM). The use of the CFM is currently of 

considerable interest due to the rapid growth in the 

use of high-level synthesis and the parallel increase 

in complexity and density of ICs. Using the CFM 

allows tests to be independent of the adopted 

synthesis tool and vendor library. Arithmetic 

modules, like adders (the primary element in a PE), 

due to their regularity, are designed in a very dense 

configuration.  

Moreover, the use of a relatively more 

comprehensive fault model, the single stuck-at (SSA) 

model, is required to cover actual failures in the 

interconnect data bus between PEs. The SSA fault is 

a well-known structural fault model that assumes 

faults cause a line in the circuit to behave as if it were 

permanently at logic “0” [stuck-at 0 (SA0)] or logic 

“1” [stuck-at 1 (SA1)]. The SSA fault in MECA 

architecture can result in errors in computed SAD 

values. This paper refers to this as a distorted 

computational error; its magnitude is e = SAD‟-SAD. 

Where SAD‟ is the computed SAD value with an 

SSA fault.  

 

IV. PROPOSED RQ CODE 

GENERATION 
Generally RQ code is useful for to identify the 

errors and to rectify those errors. In previous 

technique, finding the quotient and reminder becomes 

difficult and error may be generated by the TCG, to 

overcome that problem we are proposing a new 

technique in this paper. In the proposed technique we 

are finding the residue & quotient by fixing  modulus 

value as „2‟.In this technique the quotient and residue 

values for a pixel value can be obtained by simple 

operation and is explained below. 

Step-1 :Represent the input pixel value in the binary 

format. 

Step-2: Perform the single bit shift right operation 

and place bit „0‟ in the MSB position of the above 

result and assign the integer equivalent of result of 

the above operation to variable Quotient. 

Step-3: Verify the LSB bit in the binary format of the 

input pixel either it is Zero or One and assign the 

integer equivalent of the above result to the variable 

Reminder. 

Step-4 : Finally Quotient and Reminder values are 

obtained and those values can be used for the 

comparison between TCG output and PE output 
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Step-5 : Find the quotient and reminder in TCG by 

performing the subtraction between current and 

reference pixels before the RQ code generation and 

add those values to previously calculated values. 

  

Numerical Example: 

Let assume the pixel value as 36.We need 8-bits 

to represent the above pixel value. 

Binary representation of it is: 00100100 

Output of the Shift right operation is : 00010010 

Finally output of step-2 is: 00010010  

Quotient value is :18 

Output of step-3 is: 00000000 

Reminder value is :0 

 

V. RESULTS AND DISCUSSIONS 
Absolute Difference              

 
Fig 4: Absolute Result Schematic Diagram 

 

Description: Absolute Difference as a two inputs 

a, b i.e. current and reference pixels each of 8-bit 

length and one output result also 8-bit length. The 

behavioral simulation waveform for the Absolute 

Difference is shown in Fig 4. In the Fig 4 shows the 

two inputs with 8-bit length are „a‟ (current Pixels) 

and „b‟ (reference pixels) and 8-bit output result.  

 
Fig 5: Simulation Waveform for Absolute difference 

 

Processing Element: 

 
Fig6 Processing Element Module Schematic Diagram 

 

Description: Processing Element as a three 

inputs create_error, current pixel, reference pixel 

each of 8-bit and output is a sad_dash as a 12-bit 

data. The input of PE is a current pixel and reference 

pixels are shown in Fig 6. The behavioral simulation 

waveform for the Processing Element is shown in Fig 

7. In the Fig 7 the two inputs are 8-bit length are „a‟ 

(current Pixels) and „b‟ (reference pixels) input and 

12-bit output. 

 
Fig 7: Simulation Waveform of Processing Element 

 

Modulus code 

 
Fig 8 Modulus code Schematic Diagram 

 

Description: Modulus code as a two inputs i.e. 

dividend, divider each of 12-bit length and it has one 

output it as a modulus 4 –bit of length is shown in 

Fig 8. The behavioral simulation waveform for the 

Modulus Division code as a two inputs i.e. dividend, 

divider each of 12-bit length and it has one output it 

as a modulus 4 –bit of length is shown in Fig 9. 

 
Fig 9 Simulation Waveform of Modulus 

 

Coder module 

Description: Coder as a three inputs clk, cur_pix, 

ref_pix and each of 8-bit length and output consists 

two coders i.e. out_a, out_b it consists of 4-bit length.  
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Fig 10 Coder Schematic Diagram  

 

The input of a coder is clk, current and reference 

pixels are shown in Fig 10. The behavioral simulation 

waveform for the Coder as a three inputs clk, 

cur_pix, ref_pix and each of 8-bit length and output 

consists two coders i.e. out_a, out_b it consists of 4-

bit length. The input of a coder is clk, current and 

reference pixels is shown in Fig 11. 

 
Fig 11 Simulation Waveform of Coder 

 

Selector Module 

 
Fig 12. Selector Module Schematic diagram 

 

Description: Selector takes the output of the PE 

as an input. Another input to the selector is the output 

of the detector. It has three inputs clk, select, PE_out. 

And the output is select_out, error_free each of 12-bit 

length is shown in Fig 12. The behavioral simulation 

waveform for the Selector takes the output of the PE 

as an input. Another input to the selector is the output 

of the detector. It has three inputs clk, select, 

PE_out. And the output is select_out, error_free each 

of 12-bit length is shown in Fig 13 

 
Fig 13 Simulation Waveform of Selector 

 

Corrector Module 

 
Fig 14 Corrector Module Schematic Diagram 

 

Description: Input to the Corrector module is the 

output of the selector module which is SAD that 

needs to be corrected. It as three inputs select_out, 

sphi_1, sphi_2 and output as a corr_out as a12-bit 

length is shown in Fig 14. The behavioral simulation 

waveform for the Input to the Corrector module is the 

output of the selector module which is SAD that 

needs to be corrected. It as three inputs select_out, 

sphi_1, sphi_2 and output as a corr_out as a12-bit 

length is shown in Fig 15. 

 
Fig 15 simulation waveform of Corrector 
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Top Module: (Simulation Waveform)

 
Fig 16 Top Module schematic Diagram 

 

Description: The proposed design is developed 

in a top down design methodology that the code is a 

mixed version of both behavioral and structural. The 

proposed Architecture consists of basic modules like 

Absolute Difference, Compressor, Processing 

Element, Modulus Division, Coder, Selector and 

Corrector modules. The schematic of Top Module for 

BISDC Architecture for MECA is shown in Fig 16. 

The behavioral simulation results for Top 

Module i.e., BISDC Architecture for MECA with 

inputs of clk, cur_pixel[7:0], ref_pixel[7:0], 

Create_error and outputs with error, with_out_error 

are given in Fig 16. This waveform contains signals 

like N (sum of total number of current pixels and 

reference pixels without error), N_dash_error (sum of 

total number of current pixels and reference pixels 

with error), syndrome_7 [3:0], syndrome_15 [3:0]. 

 

AREA RESULTS OF TCG 

Based on Existing Division Method: 

Device Utilization Summary 

(estimated values) 

Logic 

Utilization 

Used Available Utilization 

Number of 

Slices 

126 768 16% 

Number of 4 

input LUTs 

207 1536 13% 

Number of 

bonded IOBs 

32 124 25% 

 

Based on Proposed Division Method; 

      Extended Method-I: 

Device Utilization Summary 

(estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 39 768 5% 

Number of 4 input 

LUTs 

71 1536 4% 

Number of bonded 

IOBs 

30 124 24% 

 

      

 

 Extended Method-II: 

Device Utilization Summary 

(estimated values) 

Logic 

Utilization 

Used Available Utilization 

Number of 

Slices 

25 768 3% 

Number of 4 

input LUTs 

47 1536 3% 

Number of 

bonded IOBs 

32 124 25% 

 

COMPARISION OF TCG PERFORMANCE IN 

TERMS OF TIME 

Based on Existing Division  : 63.970ns 

Based on Proposed Division  

    Extended Method-I : 37.678 ns 

    Extended Method-II : 33.411 ns  

 

VI. CONCLUSION 
This project proposes BISDC architecture for 

self-detection and self-correction of errors of PEs in 

an MECA. Based on the error detection correction 

concepts of bi residue codes, this paper presents the 

corresponding definitions used in designing the BISD 

and BISC circuits to achieve self-detection and self-

correction operations. Performance evaluation reveals 

that the proposed BISDC architecture effectively 

achieves self-detection and self-correction 

capabilities with minimal area. 

The Functional-simulation has been successfully 

carried out with the results matching with expected 

ones. The design functional verification and 

Synthesis is done by using Xilinx-ISE/XST and 

Cadence RTL Compiler of BISDC architecture for 

MECA. In this project the Area obtained is 87% 

using Cadence RTL Compiler. 
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