
K.Sarada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 5), January 2015, pp.66-72

 www.ijera.com 66 | P a g e

Improved Error Detection and Data Recovery Architecture for

Motion Estimation Testing Applications

K.Sarada
1
, Modukuri Kishore Babu

2

1
Department of ECE, Malineni Perumalu Educational Society, Puladigunta, Guntur(dt)., A. P, India.

2
Assistant.proffesor Department of ECE, Malineni Perumalu Educational Society, Puladigunta, Guntur (dt).,

A.P, India.

Abstract
Given the critical role of motion estimation (ME) in a video coder, testing such a module is of priority concern.

While focusing on the testing of ME in a video coding system, this work presents an error detection and data

recovery (EDDR) design, based on the proposed residue-and-quotient (RQ) code, to embed into ME for video

coding testing applications. An error in processing elements (PEs), i.e. key components of a ME, can be

detected and recovered effectively by using the proposed EDDR design. Experimental results indicate that the

proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and

timing penalty. Importantly, the proposed EDDR design performs satisfactorily in terms of throughput and

reliability for ME testing applications.

Keywords: Area overhead, data recovery, error detection, motion estimation, reliability, proposed residue-and-

quotient (RQ) code.

I. INTRODUCTION
The new Joint Video Team (JVT) video coding

standard has garnered increased attention recently.

Generally, motion estimation computing array

(MECA) performs up to 50% of computations in the

entire video coding system, and is typically

considered the computationally most important part

of video coding systems. Thus, integrating the

MECA into a system-on-chip (SOC) design has

become increasingly important for video coding

applications.

Although advances in VLSI technology allow

integration of a large number of processing elements

(PEs) in an MECA into an SOC, this increases the

logic-per-pin ratio, thereby significantly decreasing

the efficiency of chip logic testing. For a commercial

chip, a video coding system must introduce design

for testability (DFT), especially in an MECA.

The objective of DFT is to increase the ease with

which a device can be tested to guarantee high

system reliability. Many DFT approaches have been

developed.

These approaches can be divided into three

categories: ad hoc (problem oriented), structured, and

built-in self-test (BIST). Among these techniques,

BIST has an obvious advantage in that expensive test

equipment is not needed and tests are low cost.

This paper develops a built-in self-detection and

correction (BISDC) architecture for motion

estimation computing arrays(MECAs).Based on the

error detection & correction concepts of biresidue

codes, any single error in each processing element in

an MECA can be effectively detected and corrected

online using the proposed BISD and built-in self-

correction circuits. Performance analysis and

evaluation demonstrate that the proposed BISDC

architecture performs well in error detection and

correction with minor area.

Section II describes the mathematical model of

proposed RQ code and the corresponding circuit

design of the RQ code generator (RQCG). Section III

then introduces the proposed EDDR architecture,

fault model definition, and test method. Next, Section

IV evaluates the performance in area overhead,

timing penalty, throughput and reliability analysis to

demonstrate the feasibility of the proposed EDDR

architecture for ME testing applications. Conclusions

are finally drawn in Section V.

II. BACKGROUND
The Motion Estimation Computing Array is used

in Video Encoding applications to calculate the best

motion between the current frame and reference

frames. The MECA is in decoding application

occupies large amount of area and timing penalty. By

introducing the concept of Built-in Self test technique

the area overhead is increased in less amount of area.

Digital Video Compression

Video compression is achieved on two separate

fronts by eliminating spatial redundancies and

temporal redundancies from video signals. Removing

spatial redundancies involves the task of removing

video information that is consistently repeated within

certain areas of a single frame. For example a frame

shot of a blue sky will have a consistent shade of blue

RESEARCH ARTICLE OPEN ACCESS

K.Sarada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 5), January 2015, pp.66-72

 www.ijera.com 67 | P a g e

across the entire frame. This information can be

compressed through the use of various discreet cosine

transformations that map a given image in terms of

its light or color intensities. This paves the way for

spatial compression by only capturing the distinct

intensities, instead of the spread of intensities over

the entire frame. Since compression through

removing spatial redundancies does not involve the

use of motion estimation, this topic is not examined

further.

Compression through the removal of temporal

redundancies involves compressing information that

is repeated over a given sequence of frames. For

example the objects in the background of a news

anchor being filmed are not likely to change over the

course of the footage. This redundancy can be taken

advantage of to reduce the storage space required for

the footage. When the background does happen to

move, recording only the motion of objects over

consecutive frames in the form of motion vectors can

still achieve significant amounts of compression.

Consequently, the motion estimation process is the

process of deriving a suitable Motion Vector (MV)

that best describes the spatial movement of objects

from one frame to the next.

The spatial and temporal compression techniques

discussed above have been widely implemented in

former compression standards such as MPEG 2

(developed by the Motion Picture Experts Group

committee). At present, the same two fundamental

techniques have been enhanced and optimized to

form the new standard used in H.264 video

compression. The H.264 standard was jointly formed

by the International Telecommunications Union –

Telecommunications Standardization Sector (ITU –

T) Video Coding Experts Group (VCEG) and the

International Organization for Standardization(ISO)

MPEG committee. MPEG 2 had compression ratios

of between 20:1 and 30:1, the new H.264 standard

can achieve compression ratios as high as 50:1 and

60:1 and achieve better video quality.

Among many other new features and

enhancements, the most notable features of the H.264

standard for this work are its ability to achieve a finer

granularity of motion estimation and its ability to

capture periodic motion.

Block Matching Motion Estimation

Several different algorithms derived from

various theories, including object-oriented tracking,

exist to perform motion estimation. Among them, one

of the most popular algorithms is the Block Matching

Motion Estimation (BME) algorithm. BME treats a

frame as being composed of many individual sub-

frame blocks, known as macro Blocks. Motion

vectors are then used to encode the motion of the

macro Blocks through frames of video via a frame by

frame matching process.

When a frame is brought into the encoder for

compression, it is referred to as the current frame. It

is the goal of the BME unit to describe the motion of

the macro Blocks within the current frame relative to

a set of reference frames. The reference frames may

be previous or future frames relative to the current

frame. Each reference frame is also divided into a set

of sub frame blocks, which are equal to the size of

the macro Blocks. These blocks are referred to as

reference Blocks.

The BME algorithm will scan several candidate

reference Blocks within a reference frame to find the

best match to a macro Block. Once the best reference

Block is found a motion vector is then calculated to

record the spatial displacement of the macro Block

relative to the matching reference Block, as shown in

Figure 1

Fig 1: Block Matching between Current & reference

frames

Search Windows

When searching a reference frame for possible

macro Block matches, the entire reference frame is

not searched. Instead the search is restricted within a

search window. Search windows in most H.264

implementations have a size of 48-pixel (rows) x 63-

pixel (columns). In this thesis, we use the same

48x63 search window size. This window consists of a

vertical search range of [-16, +16] and a horizontal

search range of [-24, +23] pixels as illustrated in

Figure 2

Fig 2: Search Window size Definition

K.Sarada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 5), January 2015, pp.66-72

 www.ijera.com 68 | P a g e

In the Fig 2, the dashed large rectangle in the

reference frame represents the 48x63 search window

area. The dashed square in the top left corner of the

search window represents the first of the 1584

possible candidate 16x16 reference Blocks. Each

subsequent reference Block is offset by either one

pixel row or one pixel column from its predecessor

while the entire search window area is covered by the

overlapping candidate reference Blocks. Note that the

original 16x16 macro Block is positioned at the

centre of the search window. In order to compare it to

every candidate reference Block within the search

window, the macro Block has a maximum

displacement of 24 pixels to the left, 23 pixels to the

right, 16 pixels up, and 16 pixels down from its

original position – resulting in a horizontal search

range of [-24, +23] and a vertical search range of [-

16, +16].

III. PROPOSED SYSTEM
In this paper the Built-in Self test Technique

(BIST) is included in the MECA and in each of

Processing Element in MECA. Thus by introducing

the BIST Concept the testing is done internally

without Connecting outside testing Requirements. So

the area required is also reduces. And in this Project

the Errors in MECA are Calculated and the Concept

of Diagnoses i.e. Self Detect and Self Repair

Concepts are introduced. The area results are

compared with the MECA without BIST technique.

Fig3: Block Diagram of Proposed MECA BIST

Signals TC1and TC2 are utilized to select data

paths from Cur.Pixel and Ref.pixel, respectively. The

output of a specific PEi can be delivered to a detector

for detecting errors using the DC1 signal. Moreover,

the selector circuit is controlled by signals SC1 and

SC2 that receive data from a specific PEi+1, and then

export these data to the next specific PEi or syndrome

analysis and corrector (SAC) for error correction.

Based on the concepts of BIST and bi-residue

codes, this paper presents a built-in self-

detection/correction (BISDC) architecture that

effectively self-detects and self-corrects PE errors in

an MECA. Notably, any array-based computing

structure, such as the discrete cosine transform

(DCT), iterative logic array (ILA), and finite-impulse

filter (FIR), is suitable for the proposed method to

detect and correct errors based on bi-residue codes.

Fault Model

The PEs are important building blocks and are

connected in a regular manner to construct an

MECA. Generally, PEs are surrounded by sets of

adders and accumulators that determine how data

flows through them.

Thus, PEs can be considered the class of circuits

called ILAs, whose testing assignment can be easily

achieved using the fault model called as cell fault

model (CFM). The use of the CFM is currently of

considerable interest due to the rapid growth in the

use of high-level synthesis and the parallel increase

in complexity and density of ICs. Using the CFM

allows tests to be independent of the adopted

synthesis tool and vendor library. Arithmetic

modules, like adders (the primary element in a PE),

due to their regularity, are designed in a very dense

configuration.

Moreover, the use of a relatively more

comprehensive fault model, the single stuck-at (SSA)

model, is required to cover actual failures in the

interconnect data bus between PEs. The SSA fault is

a well-known structural fault model that assumes

faults cause a line in the circuit to behave as if it were

permanently at logic “0” [stuck-at 0 (SA0)] or logic

“1” [stuck-at 1 (SA1)]. The SSA fault in MECA

architecture can result in errors in computed SAD

values. This paper refers to this as a distorted

computational error; its magnitude is e = SAD‟-SAD.

Where SAD‟ is the computed SAD value with an

SSA fault.

IV. PROPOSED RQ CODE

GENERATION
Generally RQ code is useful for to identify the

errors and to rectify those errors. In previous

technique, finding the quotient and reminder becomes

difficult and error may be generated by the TCG, to

overcome that problem we are proposing a new

technique in this paper. In the proposed technique we

are finding the residue & quotient by fixing modulus

value as „2‟.In this technique the quotient and residue

values for a pixel value can be obtained by simple

operation and is explained below.

Step-1 :Represent the input pixel value in the binary

format.

Step-2: Perform the single bit shift right operation

and place bit „0‟ in the MSB position of the above

result and assign the integer equivalent of result of

the above operation to variable Quotient.

Step-3: Verify the LSB bit in the binary format of the

input pixel either it is Zero or One and assign the

integer equivalent of the above result to the variable

Reminder.

Step-4 : Finally Quotient and Reminder values are

obtained and those values can be used for the

comparison between TCG output and PE output

K.Sarada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 5), January 2015, pp.66-72

 www.ijera.com 69 | P a g e

Step-5 : Find the quotient and reminder in TCG by

performing the subtraction between current and

reference pixels before the RQ code generation and

add those values to previously calculated values.

Numerical Example:

Let assume the pixel value as 36.We need 8-bits

to represent the above pixel value.

Binary representation of it is: 00100100

Output of the Shift right operation is : 00010010

Finally output of step-2 is: 00010010

Quotient value is :18

Output of step-3 is: 00000000

Reminder value is :0

V. RESULTS AND DISCUSSIONS
Absolute Difference

Fig 4: Absolute Result Schematic Diagram

Description: Absolute Difference as a two inputs

a, b i.e. current and reference pixels each of 8-bit

length and one output result also 8-bit length. The

behavioral simulation waveform for the Absolute

Difference is shown in Fig 4. In the Fig 4 shows the

two inputs with 8-bit length are „a‟ (current Pixels)

and „b‟ (reference pixels) and 8-bit output result.

Fig 5: Simulation Waveform for Absolute difference

Processing Element:

Fig6 Processing Element Module Schematic Diagram

Description: Processing Element as a three

inputs create_error, current pixel, reference pixel

each of 8-bit and output is a sad_dash as a 12-bit

data. The input of PE is a current pixel and reference

pixels are shown in Fig 6. The behavioral simulation

waveform for the Processing Element is shown in Fig

7. In the Fig 7 the two inputs are 8-bit length are „a‟

(current Pixels) and „b‟ (reference pixels) input and

12-bit output.

Fig 7: Simulation Waveform of Processing Element

Modulus code

Fig 8 Modulus code Schematic Diagram

Description: Modulus code as a two inputs i.e.

dividend, divider each of 12-bit length and it has one

output it as a modulus 4 –bit of length is shown in

Fig 8. The behavioral simulation waveform for the

Modulus Division code as a two inputs i.e. dividend,

divider each of 12-bit length and it has one output it

as a modulus 4 –bit of length is shown in Fig 9.

Fig 9 Simulation Waveform of Modulus

Coder module

Description: Coder as a three inputs clk, cur_pix,

ref_pix and each of 8-bit length and output consists

two coders i.e. out_a, out_b it consists of 4-bit length.

K.Sarada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 5), January 2015, pp.66-72

 www.ijera.com 70 | P a g e

Fig 10 Coder Schematic Diagram

The input of a coder is clk, current and reference

pixels are shown in Fig 10. The behavioral simulation

waveform for the Coder as a three inputs clk,

cur_pix, ref_pix and each of 8-bit length and output

consists two coders i.e. out_a, out_b it consists of 4-

bit length. The input of a coder is clk, current and

reference pixels is shown in Fig 11.

Fig 11 Simulation Waveform of Coder

Selector Module

Fig 12. Selector Module Schematic diagram

Description: Selector takes the output of the PE

as an input. Another input to the selector is the output

of the detector. It has three inputs clk, select, PE_out.

And the output is select_out, error_free each of 12-bit

length is shown in Fig 12. The behavioral simulation

waveform for the Selector takes the output of the PE

as an input. Another input to the selector is the output

of the detector. It has three inputs clk, select,

PE_out. And the output is select_out, error_free each

of 12-bit length is shown in Fig 13

Fig 13 Simulation Waveform of Selector

Corrector Module

Fig 14 Corrector Module Schematic Diagram

Description: Input to the Corrector module is the

output of the selector module which is SAD that

needs to be corrected. It as three inputs select_out,

sphi_1, sphi_2 and output as a corr_out as a12-bit

length is shown in Fig 14. The behavioral simulation

waveform for the Input to the Corrector module is the

output of the selector module which is SAD that

needs to be corrected. It as three inputs select_out,

sphi_1, sphi_2 and output as a corr_out as a12-bit

length is shown in Fig 15.

Fig 15 simulation waveform of Corrector

K.Sarada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 5), January 2015, pp.66-72

 www.ijera.com 71 | P a g e

Top Module: (Simulation Waveform)

Fig 16 Top Module schematic Diagram

Description: The proposed design is developed

in a top down design methodology that the code is a

mixed version of both behavioral and structural. The

proposed Architecture consists of basic modules like

Absolute Difference, Compressor, Processing

Element, Modulus Division, Coder, Selector and

Corrector modules. The schematic of Top Module for

BISDC Architecture for MECA is shown in Fig 16.

The behavioral simulation results for Top

Module i.e., BISDC Architecture for MECA with

inputs of clk, cur_pixel[7:0], ref_pixel[7:0],

Create_error and outputs with error, with_out_error

are given in Fig 16. This waveform contains signals

like N (sum of total number of current pixels and

reference pixels without error), N_dash_error (sum of

total number of current pixels and reference pixels

with error), syndrome_7 [3:0], syndrome_15 [3:0].

AREA RESULTS OF TCG

Based on Existing Division Method:

Device Utilization Summary

(estimated values)

Logic

Utilization

Used Available Utilization

Number of

Slices

126 768 16%

Number of 4

input LUTs

207 1536 13%

Number of

bonded IOBs

32 124 25%

Based on Proposed Division Method;

 Extended Method-I:

Device Utilization Summary

(estimated values)

Logic Utilization Used Available Utilization

Number of Slices 39 768 5%

Number of 4 input

LUTs

71 1536 4%

Number of bonded

IOBs

30 124 24%

 Extended Method-II:

Device Utilization Summary

(estimated values)

Logic

Utilization

Used Available Utilization

Number of

Slices

25 768 3%

Number of 4

input LUTs

47 1536 3%

Number of

bonded IOBs

32 124 25%

COMPARISION OF TCG PERFORMANCE IN

TERMS OF TIME

Based on Existing Division : 63.970ns

Based on Proposed Division

 Extended Method-I : 37.678 ns

 Extended Method-II : 33.411 ns

VI. CONCLUSION
This project proposes BISDC architecture for

self-detection and self-correction of errors of PEs in

an MECA. Based on the error detection correction

concepts of bi residue codes, this paper presents the

corresponding definitions used in designing the BISD

and BISC circuits to achieve self-detection and self-

correction operations. Performance evaluation reveals

that the proposed BISDC architecture effectively

achieves self-detection and self-correction

capabilities with minimal area.

The Functional-simulation has been successfully

carried out with the results matching with expected

ones. The design functional verification and

Synthesis is done by using Xilinx-ISE/XST and

Cadence RTL Compiler of BISDC architecture for

MECA. In this project the Area obtained is 87%

using Cadence RTL Compiler.

REFERENCES

[1] Chun-lung Hsu, chang-Hsin Cheng, and Yu

Liu, “Built- in self-detection/correction

Architecture for Motion Estimation

Computing Arrays”, IEEE Transcations on

Very Large Scale Integration (VLSI)

systems, VOL.18, NO.2, February 2010,

pp.319-324.

[2] Thammavarapu R.N Rao, Member, IEEE,

“Biresidue Error-Correcting Codes for

Computer Arithmetic”, IEEE Transactions

on computers, VOL. C-19, NO. 5, May

1970, pp.398-402.

[3] Meihua GU, Ningmei YU, Lei ZHU,

Wenhua JIA, “High Throughput and Cost

Efficient VLSI Architecture of Integer

Motion Estimation for H.264/AVC”, Journal

of Computational Information Systems 7:4

(2011), pp.1310-1318.

K.Sarada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 5), January 2015, pp.66-72

 www.ijera.com 72 | P a g e

[4] 4. Zhong-Li He, Chi-Ying Tsui, Member,

IEEE, Kai-Keung Chan, and Ming L. Liou,

Fellow, IEEE, “Low-Power VLSI Design for

Motion Estimation Using Adaptive Pixel

Truncation”, IEEE Transactions on circuits

and systems for video technology, VOL.10,

NO.5, August 2000, pp.669- 677.

[5] R. J. Higgs and J. F. Humphreys, “Two-

error-location for quadratic residue codes,”

Proc. Inst. Electr. Eng. Commun, vol. 149,

no. 3, Jun.2002, pp.129–131.

[6] Charles E.Stroud, ”A Designer’s Guide to

Built in Self Test”, Kluwer Academic

Publishes, 2002.

[7] Laung-Terng Wang, Cheng-Wen Wu,

Xiaoqing Wen,” VLSI TEST PRINCIPLES

AND ARCHITECTURES”, Elsevier, 2006.

